EconPapers    
Economics at your fingertips  
 

Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning

Joonki Hong, Dongheon Lee, Eui-Rim Jeong and Yung Yi

Applied Energy, 2020, vol. 278, issue C, No S0306261920311429

Abstract: This paper presents the first full end-to-end deep learning framework for the swift prediction of lithium-ion battery remaining useful life. While lithium-ion batteries offer advantages of high efficiency and low cost, their instability and varying lifetimes remain challenges. To prevent the sudden failure of lithium-ion batteries, researchers have worked to develop ways of predicting the remaining useful life of lithium-ion batteries, especially using data-driven approaches. In this study, we sought a higher resolution of inter-cycle aging for faster and more accurate predictions, by considering temporal patterns and cross-data correlations in the raw data, specifically, terminal voltage, current, and cell temperature. We took an in-depth analysis of the deep learning models using the uncertainty metric, t-SNE of features, and various battery related tasks. The proposed framework significantly boosted the remaining useful life prediction (25X faster) and resulted in a 10.6% mean absolute error rate.

Keywords: Lithium-ion battery; Remaining useful life; End-to-end deep learning; Dilated convolutional neural networks; Prediction uncertainty (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311429
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311429

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115646

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311429