The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea
Xuwen Qin,
Qianyong Liang,
Jianliang Ye,
Lin Yang,
Haijun Qiu,
Wenwei Xie,
Jinqiang Liang,
Jin'an Lu,
Cheng Lu,
Hailong Lu,
Baojin Ma,
Zenggui Kuang,
Jiangong Wei,
Hongfeng Lu and
Beibei Kou
Applied Energy, 2020, vol. 278, issue C, No S0306261920311478
Abstract:
The first offshore natural gas hydrate production test of China in 2017 has proved the feasibility of hydrate exploitation from clayey-silt reservoirs, which possesses the highest reservoirs than other types of hydrate resources. However, owing to the absence of monitoring wells in this production test, the hydrate dissociation behavior cannot be analyzed through pressure and temperature changes of hydrate reservoirs. This paper focuses on the simulation study on the detailed response of the temperature and pore pressure of hydrate reservoirs of Well SHSC-4 during the gas production by depressurization. Meanwhile, it highlights the analysis of favorable areas for the formation of secondary hydrates and the influence of the secondary hydrates on pressure and temperature field of hydrate reservoirs. The simulation results indicate that in the first 60 days, the hydrate reservoirs feature a dissociation radius of about 5 m, and the gas production from hydrate dissociation accounts for about 85%. After 1 year, 2 years and 5 years of hydrate exploitation, the influence radius of low-pressure area (<10 MPa) is 15 m, 16 m and 17 m, respectively, suggesting that the hydrate reservoirs have higher gas production efficiency in the first year. Furthermore, the temperature and pressure of hydrate reservoirs are not favorable to the formation of secondary hydrates in the first 60 days. In long-term production, secondary hydrates are mainly formed at hydrate dissociation front. This can increase the pore pressure and further decrease the effective stress in the local areas of hydrate reservoirs, thus affecting mechanical stability of the local hydrate reservoirs.
Keywords: Marine gas hydrate; Temperature response; Pore pressure response; Depressurization production; Secondary hydrate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311478
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311478
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115649
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().