EconPapers    
Economics at your fingertips  
 

A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption

Wenbo Wu, Bing Dong, Wang, Qi (Ryan), Meng Kong, Da Yan, Jingjing An and Yapan Liu

Applied Energy, 2020, vol. 278, issue C, No S0306261920311545

Abstract: In the US, people spend more than 90% of their time in buildings, which contributes to more than 70% of overall electricity usage in the country. Occupant behavior is becoming a leading factor impacting energy consumption in buildings. Existing occupant-behavior studies are often limited to a single building and individual behavior, such as presence or interactions in confined spaces. Moreover, studies modeling occupant behavior at the building or community level are limited. With the development of the Internet of Things, mobile positioning data are available through social media and location-based service applications. The goal of this study is to analyze the impacts of more representative occupancy profiles, derived from high resolution urban scale mobile position data, on building energy consumption. . A pilot study was conducted on more than 900 buildings in downtown San Antonio, Texas, with billions of mobile positioning data. We then compared these profiles with the existing Department of Energy prototype models and quantified the differences using a statistical method. On average, the differences in occupancy rates between the ones derived from the empirical profile and the ones from the Department of Energy reference ranged from −30% to 70%. The realistic derived profiles are then simulated in the CityBES. The results show that the predicted cooling energy demand is reduced by up to 40% while the heating energy demand is reduced by up to 60%. This study, therefore, advances knowledge of urban planning as well as urban-scale energy modeling and optimization.

Keywords: Occupancy profile; Urban mobility; Global positioning system; Urban-scale building energy modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311545
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311545

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115656

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311545