EconPapers    
Economics at your fingertips  
 

Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process

Bosheng Su, Wei Han, Hongzhou He, Hongguang Jin, Zhijie Chen, Jieqing Zheng, Shaohui Yang and Xiaodong Zhang

Applied Energy, 2020, vol. 279, issue C, No S0306261920311892

Abstract: Biogas chemical exergy is destructed seriously in the conventional energy systems due to the direct combustion. Thermochemical conversion method is a potential way to utilize biogas chemical energy. A solar-driven two-stage biogas reforming integrated with a moderate carbon dioxide separation system is developed to overcome the inherent problems in the conventional one-stage process, including high energy and water consumption and low carbon dioxide conversion rate. By moderate removal of carbon dioxide in the new process, methane steam reforming and methane dry reforming can proceed in two reformers respectively. A comparative study was conducted to show the improvement of the carbon dioxide conversion rate, water saving ability and thermal performance in the new process comparing with the process proposed in the recent published studies. On this basis, an optimal design of the new process was explored. It was found that a lower biogas split ratio promotes the integrated performance; however, a critical biogas split ratio should be kept to avoid the carbon deposition. Unlike conventional biogas upgrading system, pursuing a high carbon dioxide separation rate in the new process is not a wise option. An optimal syngas heating value exists when the carbon dioxide separation rate reaches a middle value. This work should provide a new method to exploit the biogas chemical energy efficiently.

Keywords: Biogas reforming; Solar thermochemistry; Carbon dioxide separation; Two-stage reforming; Optimal design (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311892
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920311892

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115693

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920311892