Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations
Naren Srivaths Raman,
Karthikeya Devaprasad,
Bo Chen,
Herbert A. Ingley and
Prabir Barooah
Applied Energy, 2020, vol. 279, issue C, No S0306261920312502
Abstract:
Even though energy-efficient climate control of commercial buildings using model predictive control (MPC) has been widely investigated, most MPC formulations ignore humidity and latent heat. The inclusion of moisture makes the problem considerably more challenging, primarily since a cooling and dehumidifying coil model which accounts for both sensible and latent heat transfers is needed. In this work, we propose an MPC controller in which humidity and latent heat are incorporated in a principled manner. We construct low order data-driven models of a cooling and dehumidifying coil that can be used in the MPC formulation. The resulting controller’s performance is tested in simulation using a plant that differs significantly from the model used by the optimizer. Additionally, the performance of the proposed controller is compared with that of a naive MPC controller which does not explicitly consider humidity, and also to that of a conventional rule-based controller. Simulations show that the proposed MPC controller outperforms the other two in terms of energy use and thermal comfort. It is also observed that the naive MPC formulation which does not consider humidity leads to poor humidity control under certain conditions. Such violations in humidity can adversely affect occupant comfort and health.
Keywords: Model predictive control; HVAC systems; Humidity; Smart buildings; Energy efficiency; Economic MPC; Latent heat (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920312502
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312502
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115765
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().