Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies
Miguel Heleno,
David Sehloff,
Antonio Coelho and
Alan Valenzuela
Applied Energy, 2020, vol. 279, issue C, No S0306261920313040
Abstract:
This paper models the role of electricity tariffs on the long-term adoption of photovoltaic and storage technologies as well as the consequent impact on the distribution grid. An adoption model that captures the economic rationality of tariff-driven investments and considers the stochastic nature of individual consumers’ decisions is proposed. This model is then combined with a probabilistic load flow to evaluate the long-term impacts of the adoption on the voltage profiles of the distribution grid. To illustrate the methodology, different components of the electricity tariffs, including solar compensation mechanisms and time differentiation of Time-of-Use (ToU) rates, are evaluated, using a case study involving a section of a medium-voltage network with 118 nodes.
Keywords: Rate design; Distributed energy resources; Distribution grid planning; Probabilistic load flow (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313040
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313040
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115826
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().