EconPapers    
Economics at your fingertips  
 

Influence of the initial CH4-hydrate system properties on CO2 capture kinetics

Quang-Du Le, Carla T. Rodriguez, Ludovic N. Legoix, Claire Pirim and Bertrand Chazallon

Applied Energy, 2020, vol. 280, issue C, No S0306261920313209

Abstract: Recovering methane from natural gas hydrate deposits using carbon dioxide injection is currently of great environmental and energetic interest as it shows potential for producing an energy resource while mitigating CO2 emissions through CO2 sequestration. This work investigates the exchange kinetic between CH4 and CO2 (or CO2-N2(v)) in synthetic hydrates, with an emphasis on the impact of CH4 hydrate formation conditions (e.g. driving force Δp) on the subsequent exchange reactions. Different driving forces Δp are utilized and show that the exchange kinetic is improved by a factor of ~3 when the exchange is performed with low Δp CH4 hydrates, for which there is a higher relative amount of free H2O(liq) (277 K); the kinetic is further improved when stirring is applied. Isobaric CH4 hydrates exhibit a fast primary hydrate dissociation and CH4 release, followed by a slower exchange kinetic, possibly limited by solid-state exchange diffusion or secondary CO2-rich hydrate formation within the stability field of CH4 hydrates. Upon exposure to a mixed CO2-N2(v) gas stream, secondary hydrate production is governed by the effective Δp remaining after dissolution of the gas mixture, and results in an even slower exchange reaction rate. These results may help optimizing recovery processes in field trial experiments, where both hydrates and liquid water coexist, and aid in predicting the risk of geo-hazards induced by unstable secondary hydrate formation. Furthermore, the exchange kinetic dependencies highlighted here are important as they affect the overall energy efficiency and energy cost of CH4 recovery processes in gas hydrate field trials.

Keywords: Kinetic; Thermodynamic; Gas hydrate; CH4-CO2 replacement technology; CO2 capture; Raman spectroscopy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313209
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313209

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115843

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313209