EconPapers    
Economics at your fingertips  
 

Wind turbine power modelling and optimization using artificial neural network with wind field experimental data

Haiying Sun, Changyu Qiu, Lin Lu, Xiaoxia Gao, Jian Chen and Hongxing Yang

Applied Energy, 2020, vol. 280, issue C, No S0306261920313519

Abstract: The wake effect is a major and complex problem in the wind power industry. Wake steering, such as controlling yaw angles of wind turbines, is a proven approach to mitigate the wake influence and increase the power generation of a wind farm. This paper proposes a power prediction model and optimizes yaw angles to minimize the entire wake impact on wind turbines. The power model adopts the artificial neural network (ANN)with the consideration of the wake effect, so it is called ANN-wake-power model. The model can estimate the total power generation of wind turbines for given wind speeds, wind directions, and yaw angles. A case study has been conducted to introduce the modelling process. The experimental data of five wind turbines from an operating wind farm have been used to train and evaluate the model. The ANN-wake-power model has proven to be effective in estimating the power generation. It performs a good balance between computational cost and accuracy. Subsequently, the model is applied to optimize the yaw angles by using Genetic Algorithm. With the optimized yaw angle strategy, the total power ratio of wind turbines can reach 0.96 in all directions involved. For a row of wind turbines, the optimal yaw control strategy for each wind turbine is different. Finally, it is worth noting that, to achieve a good performance of the ANN-wake-power model, sufficient input data should be adopted in the training process.

Keywords: Wind turbine power modelling; Artificial neural network; Wake effect; Wind field experiment; Yaw angle optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920313519
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313519

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115880

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313519