EconPapers    
Economics at your fingertips  
 

How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany

Matthias Kühnbach, Stefan Pisula, Anke Bekk and Anke Weidlich

Applied Energy, 2020, vol. 280, issue C, No S0306261920314033

Abstract: Energy autonomy, the desire to become independent from a centralised supply system, is a core motivation for the development of decentralised energy systems, even if it does not have tangible economic or ecological benefits. For the case of electricity, we introduce a regional system model which optimises the capacity expansion and operation of photovoltaics and battery storage. We quantify cost-efficient regional degrees of electricity autonomy for 166 regions in Southern Germany and assess how increasing the degree of autonomy beyond the optimal level affects the economic viability of a decentralised electricity system. We find that the average optimal degree of autonomy reached is 44%. Thus, our results show that a substantial increase of photovoltaic capacity is economically beneficial in all the regions examined. However, achieving a predefined degree of autonomy causes additional costs for the region and results in a large overcapacity, while all regions still rely on the superordinate electricity system to some extent.

Keywords: Decentralised energy system; Regional electricity autonomy; Capacity expansion optimisation; Photovoltaics; Battery storage system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920314033
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314033

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115947

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314033