Triple-mode grid-balancing plants via biomass gasification and reversible solid-oxide cell stack: Concept and thermodynamic performance
Ligang Wang,
Yumeng Zhang,
Chengzhou Li,
Mar Pérez-Fortes,
Tzu-En Lin,
François Maréchal,
Jan Van herle and
Yongping Yang
Applied Energy, 2020, vol. 280, issue C, No S0306261920314343
Abstract:
Biomass-to-electricity or -chemical via power-to-x can be potential flexibility means for future electrical grid with high penetration of variable renewable power. However, biomass-to-electricity will not be dispatched frequently and becomes less economically-beneficial due to low annual operating hours. This issue can be addressed by integrating biomass-to-electricity and -chemical via “reversible” solid-oxide cell stacks to form a triple-mode grid-balancing plant, which could flexibly switch among power generation, power storage and power neutral (with chemical production) modes. This paper investigates the optimal designs of such a plant concept with a multi-time heat and mass integration platform considering different technology combinations and multiple objective functions to obtain a variety of design alternatives. The results show that increasing plant efficiencies will increase the total cell area needed for a given biomass feed. The efficiency difference among different technology combinations with the same gasifier type is less than 5% points. The efficiency reaches up to 50%–60% for power generation mode, 72%–76% for power storage mode and 47%–55% for power neutral mode. When penalizing the syngas not converted in the stacks, the optimal plant designs interact with the electrical and gas grids in a limited range. Steam turbine network can recover 0.21–0.24 kW electricity per kW dry biomass energy (lower heating value), corresponding to an efficiency enhancement of up to 20% points. The difference in the amounts of heat transferred in different modes challenges the design of a common heat exchange network.
Keywords: Waste-to-energy; Grid balancing; Gasification; Power-to-x; Reversible solid-oxide cell; Sector coupling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920314343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314343
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115987
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().