A multi-scale energy systems engineering approach towards integrated multi-product network optimization
C. Doga Demirhan,
William W. Tso,
Joseph B. Powell and
Efstratios N. Pistikopoulos
Applied Energy, 2021, vol. 281, issue C, No S0306261920314604
Abstract:
21st century energy production, conversion, and delivery systems need to go through a transition to be less carbon-intensive while meeting an increasing energy demand. In a more and more interconnected world, energy systems of various sectors (e.g. power, fuels, chemicals, etc.) go through this transition via shifting the primary energy sources from carbon-intensive fossil-fuels to renewable and sustainable resources. With this study, we present a multi-scale strategy for optimal design and operation of multi-product process systems that can produce power, synthetic fuels, chemicals, and energy carriers from renewable and fossil resources. This multi-scale approach combines process synthesis, scheduling, and supply chain concepts in a mixed-integer linear programming model to address the trade-offs between integrating various fossil and renewable technologies. Our strategy is applied to integration of low-emission (i) synthetic liquid transportation fuels, (ii) hydrogen, (iii) ammonia, (iv) methanol, and (v) renewable power production from natural gas, solar, and wind energy at a location in Amarillo, Texas. Case study results show that with our approach various energy systems can be modeled either separately and integrated with the same common representation. Sectors integration to produce low-emission products in the same facility can result in 17% reduction in total production costs. While solar and wind energy are favorable to produce renewable power, current state-of-the-art methane conversion technologies are more favorable to produce hydrogen and hydrogen-based products.
Keywords: Multi-scale; Design and operation; Multi-product; Renewable; Natural gas (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920314604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314604
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116020
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().