Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation
Wei He,
Mark Dooner,
Marcus King,
Dacheng Li,
Songshan Guo and
Jihong Wang
Applied Energy, 2021, vol. 282, issue PA, No S0306261920315208
Abstract:
Although the penetration of renewable energy in power systems has been substantially increased globally in the last decade, fossil fuels are still important in providing the essential flexibility required to reliably maintain the system balance. In 2019, more than one quarter of power generation in Europe and over 40% of the UK’s electricity generation was from fossil fuels (mainly gas). For achieving the net-zero greenhouse gas emission target around the middle of this century, these fossil fuels have to be decarbonised in the coming decades. Bulk-scale energy storage has been recognised as a key technology to overcome the reduced dispatchability associated with the decrease of fossil fuels in generation. Taking the UK power system as a case study, this paper presents an assessment of geological resources for bulk-scale compressed air energy storage (CAES), and an optimal planning framework for CAES in combination with solar and wind to replace fossil fuels in the power generation system. The analysis reveals up to 725 GWh of ready-to-use capacity by utilising existing underground salt caverns in the UK. These potential CAES sites with added solar and wind generation equal to the generation from fossil fuels in 2018 can reduce carbon emissions by 84% with a cost increase by 29%, compared to the system in 2018. The results indicate the plausibly achievable cost-effectiveness of CAES as bulk-scale energy storage for power system decarbonisation in countries the geological resources are available.
Keywords: Power decarbonisation; Bulk-scale energy storage; Compressed air energy storage; Cost analysis; Short- and long-duration storage (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315208
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116097
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().