EconPapers    
Economics at your fingertips  
 

Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring

Carmen María Calama-González, Phil Symonds, Giorgos Petrou, Rafael Suárez and Ángel Luis León-Rodríguez

Applied Energy, 2021, vol. 282, issue PA, No S0306261920315361

Abstract: Improving the energy efficiency of existing buildings is a priority for meeting energy consumption and CO2 emission targets in buildings. Building simulation tools play a crucial role in evaluating the performance of energy retrofit options. In this paper, a Bayesian calibration approach is applied to reduce the discrepancies between measured and simulated temperature data. Through its application to a test cell case study, the incorporation of sensitivity analysis and Bayesian calibration techniques are proven to improve the level of agreement between on-site measurements and simulated outputs, whilst accounting for both experimental and simulation uncertainties. The accuracy of a building simulation model developed using EnergyPlus was evaluated before and after calibration. Uncalibrated models were within the uncertainty ranges specified by the ASHARE Guidelines, with hourly simulation data over-predicting measurements by 3.2 °C on average. After Bayesian calibration, the average maximum temperature difference was reduced to around 0.68 °C, an improvement of almost 80%.

Keywords: Bayesian calibration; Sensitivity analysis; Uncertainty analysis; Building energy modelling; Mediterranean climate; Housing stock (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315361

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116118

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315361