In-route inductive versus stationary conductive charging for shared automated electric vehicles: A university shuttle service
Ahmed A.S. Mohamed,
Eric Wood and
Andrew Meintz
Applied Energy, 2021, vol. 282, issue PA, No S0306261920315476
Abstract:
In-route inductive charging technology, as applied to automated electric vehicles, can help realize a fully automated system of both vehicles and chargers. This study presents a planning optimization analysis for fixed-route automated shuttles supported by in-route inductive charging technology. A techno-economic feasibility of inductive charging was assessed in comparison with stationary charging, including Level 2 AC chargers, and DC fast chargers (DCFCs). This analysis considered both present-day and future vehicle operations and overall system costs. A real project with two circulator Navya Arma shared automated electric vehicles (SAEVs) at the University of Michigan was investigated using real-world collected energy and travel data. The outcomes show that the proper design of quasi-dynamic inductive chargers at designated stops allows SAEVs to realize unlimited driving range and be cost-competitive to DCFC technology. Considering present-day costs and vehicles, low-speed SAEVs can realize charge-sustaining operation at a minimum cost either by implementing a 50-kW inductive charger at two stops with one segment per position and a 29-kWh onboard battery, or by installing a 100-kW inductive charger at one stop with one segment per position and a 28-kWh onboard battery. Considering future costs and vehicles, either a 40-kW charger at one stop with a 29-kWh battery or a 50-kW charger at the north stop with a 14-kWh battery would enable charge-sustaining operation. In addition, quasi-dynamic inductive solution can reduce the onboard battery by about 15% while providing unlimited driving range, but stationary scenarios require about 112% additional battery capacity to support a 12-h driving range.
Keywords: Automated electric shuttles; In-route inductive charging; Optimization; System planning; Inductive power transfer (IPT) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315476
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116132
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().