Open-source modeling of a low-carbon urban neighborhood with high shares of local renewable generation
Sebastian Zwickl-Bernhard and
Hans Auer
Applied Energy, 2021, vol. 282, issue PA, No S0306261920315683
Abstract:
The main research question of this work is how an urban neighborhood can optimally exploit its local renewable generation potential to cover its electricity, heat and cooling demand. Various cost-minimizing energy technology portfolio studies are examined for an energy community in Vienna, Austria. The method applied is a tailor-made extension of the existing open-source model urbs. Additional functionalities and energy services have been implemented. The results of three scenarios identify a variety of different trade-offs between energy technology utilization, local supply within the community and external supply from outside. The introduced performance indicators reveal the respective strengths/weaknesses of the different energy supply options. In this context, the economic efficiency of geothermal sources and the connection to the district cooling network are highlighted, which have so far received little attention. The insights achieved in this work directly support sustainable urban energy planning. Future work may focus on mapping higher spatial resolution, further enhancement of the performance indicators and implementation of operational energy scheduling and dispatch into the open-source modeling approach.
Keywords: Energy technology portfolio; Urban neighborhood; Local renewable energy; Open-source; Geothermal sources; District cooling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315683
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116166
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().