Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model
Joakim Munkhammar,
Dennis van der Meer and
Joakim Widén
Applied Energy, 2021, vol. 282, issue PA, No S0306261920315816
Abstract:
This study utilizes the Markov-chain mixture distribution model (MCM) for very short term load forecasting of residential electricity consumption. The model is used to forecast one step ahead half hour resolution residential electricity consumption data from Australia. The results are compared with Quantile Regression (QR) and Persistence Ensemble (PeEn) as advanced and simple benchmark models. The results were compared in terms of reliability, reliability mean absolute error (rMAE), prediction interval normalized average width (PINAW) and normalized continuous ranked probability score (nCRPS). For 10 steps conditioning for QR and PeEn, the MCM results were on par with QR, and superior to PeEn. As a sensitivity analysis, simulations were performed where the number of data points for conditioning QR and PeEn was varied and compared to the MCM output, which is based on only one data point for conditioning. It was shown that in terms of nCRPS and rMAE the QR results converged towards the MCM results for lower number of conditioning points included in QR. The nCRPS of PeEn never reached the superior MCM and QR results, but in rMAE, for number of conditioning points above 24, PeEn was the most reliable. Based on the sparse complexity design of MCM, high computational speed and competitive performance, it is suggested as a candidate for benchmark model in probabilistic forecasting of electricity consumption.
Keywords: Electricity consumption; MCM model; Probabilistic forecasting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315816
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315816
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116180
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().