Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden
Christian Mikovits,
Elisabeth Wetterlund,
Sebastian Wehrle,
Johann Baumgartner and
Johannes Schmidt
Applied Energy, 2021, vol. 282, issue PB, No S0306261920315087
Abstract:
Hydrogen produced from renewable electricity will play an important role in deep decarbonisation of industry. However, adding large electrolyser capacities to a low-carbon electricity system also increases the need for additional electricity generation from variable renewable energies. This will require hydrogen production to be variable unless other sources provide sufficient flexibility. Existing sources of flexibility in hydro-thermal systems are hydropower and thermal generation, which are both associated with sustainability concerns. In this work, we use a dispatch model for the case of Sweden to assess the power system operation with large-scale electrolysers, assuming that additional wind power generation matches the electricity demand of hydrogen production on average. We evaluate different scenarios for restricting the flexibility of hydropower and thermal generation and include 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios electrolyser utilisation is above 60% on average, (b) the inter-annual variability of hydrogen production is substantial if thermal power is not dispatched for electrolysis, and (c) this problem is aggravated if hydropower flexibility is also restricted. Therefore, either long-term storage of hydrogen or backup hydrogen sources may be necessary to guarantee continuous hydrogen flows. Large-scale dispatch of electrolysis capacity supported by wind power makes the system more stable, if electrolysers ramp down in rare hours of extreme events with low renewable generation. The need for additional backup capacities in a fully renewable electricity system will thus be reduced if wind power and electrolyser operation are combined in the system.
Keywords: Renewables; Hydrogen; Flexibility; Biomass; Long-term analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920315087
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pb:s0306261920315087
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116082
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().