Earth-abundant redox couples using durable boron doped diamond electrodes: Beyond vanadium redox couples
Alex M. Bates,
William F. Paxton,
Joshua M. Spurgeon,
Sam D. Park and
Mahendra K. Sunkara
Applied Energy, 2021, vol. 282, issue PB, No S0306261920316433
Abstract:
In this study, boron doped diamond (BDD) is utilized as a redox flow battery (RFB) electrode, demonstrating its capability with several low-cost redox couples for the first time. Active species cost, electrode corrosion, energy density, and power density are the current issues hindering the widespread adoption of RFBs. Several high-potential and low-cost redox couples, including Ce3+/Ce4+ and Mn2+/Mn3+, are shown to exhibit low overpotentials, high efficiency, and good cyclability on BDD electrodes. Using the Ce3+/Ce4+ redox couple, a formal potential of 1.67 V vs. SHE and a peak separation of 288 mV during cyclic voltammetry was obtained. Low-cost redox species significantly decrease RFB system cost while high potentials increase energy and power density. Demonstrated here, high potentials cannot be supported by traditional carbon-based RFB electrodes due to significant corrosion and gas evolution; however, the inherent properties of BDD negate this effect. This study exhibits the potential of BDD, as an alternative to traditional carbon-based electrodes, to enable a long cycle life, at high coulombic efficiencies, and with high-potential and low-cost redox couples.
Keywords: Boron doped diamond; Cerium; Corrosion; Gas evolution; Low-cost; Redox flow battery (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920316433
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:282:y:2021:i:pb:s0306261920316433
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116252
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().