EconPapers    
Economics at your fingertips  
 

Design and optimization of Stirling engines using soft computing methods: A review

Shahryar Zare, A.R. Tavakolpour-saleh, A. Aghahosseini, M.H. Sangdani and Reza Mirshekari

Applied Energy, 2021, vol. 283, issue C, No S0306261920316482

Abstract: The need for energy converters with high thermal efficiency is a central issue in the field of renewable energies. So far, different technologies have been introduced for converting renewable energies into mechanical work. Stirling engines with an optimal design can be an appropriate choice for this aim. In this paper, the applications of soft computing methods in optimization and design of the Stirling engines are discussed. Until now, four popular soft computing approaches such as genetic algorithm, particle swarm optimization, fuzzy logic, and artificial neural network have been extensively applied to design and optimize the Stirling engines. Addressing the conducted works in this field, reveals that these soft computing methods can effectively meet the main concerns of the researchers. The performance of the Stirling engines in terms of power and efficiency can be promoted by optimizing their parameters via the soft computing methods. Moreover, the soft computing methods can be further employed to optimize the Stirling engines based on other objectives such as desired operating frequency, desired strokes of power and displacer pistons, and optimal locations of closed-loop poles of the system. On the other hand, combining these soft computing methods results in hybrid intelligent techniques that serves to predict other complex characteristics of these engines including torque, heat transfer, and damping coefficients. The hybrid techniques usually contain the artificial neural networks (or fuzzy logic) incorporating the evolutionary (or swarm intelligence) algorithms for designing, optimizing, and predicting the engine specifications.

Keywords: Soft computing; Stirling engines; Genetic algorithm; Particle swarm optimization; Fuzzy logic; Artificial neural network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920316482
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316482

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116258

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316482