Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach
Vahid Shabazbegian,
Hossein Ameli,
Mohammad Taghi Ameli,
Goran Strbac and
Meysam Qadrdan
Applied Energy, 2021, vol. 284, issue C, No S030626192031672X
Abstract:
Gas-fired power plants are commonly employed to deal with the intermittency of renewable energy resources due to their flexible characteristics. Therefore, the intermittency in the power system transmits to the gas system through the gas-fired power plants, which makes the operation of these systems even more interdependent. This study proposes a novel possibilistic model for the integrated operation of gas and power systems in the presence of electric vehicles and demand response. The model takes into account uncertainty in demand prediction and output power of wind farms, which is based on possibility and necessity theories in fuzzy logic through modeling uncertain parameters by Gaussian membership function. Moreover, a contingency analysis algorithm based on maximin optimization is developed to enhance the resiliency in the integrated operation of these systems by finding the worst-case scenario for the outage of components. The proposed model is implemented on a Belgium gas network and IEEE 24-bus electricity network. It is demonstrated that the possibilistic model allows the gas network to respond to the demand variations by providing a sufficient level of linepack within the pipelines. As a result, gas-fired power plants are supposed to commit more efficiently to cope with the intermittency of wind farms, which reduce the wind curtailment by 26%. Furthermore, it is quantified that through applying the contingency analysis algorithm in presence of demand response and electrical vehicles, the costs of operation and load shedding is reduced up to 17% and 83%, respectively.
Keywords: Possibilistic chance-constrained programming; Scheduling; Resiliency analysis; Electrical vehicles; Demand response; Gas and power systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192031672X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:284:y:2021:i:c:s030626192031672x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116284
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().