Techno-economic comparison of 100% renewable urea production processes
Hanfei Zhang,
Ligang Wang,
Jan Van herle,
François Maréchal and
Umberto Desideri
Applied Energy, 2021, vol. 284, issue C, No S0306261920317712
Abstract:
Urea is widely used in agriculture, industry, and food, while it is also a potential fuel. Large-scale urea production relies on fossil fuels, thus there is a strong need for green urea given the increasing penetration of renewable energy sources. A potential alternative is biomass-to-urea; however, it cannot fully convert the biomass carbon into urea. To achieve full carbon conversion, innovative integrated biomass- and power-to-urea processes are designed conceptually. The two green urea production processes are evaluated techno-economically and compared with state-of-the-art methane-to-urea. The results show that the methane-to-urea achieves a system efficiency of 58% (LHV), while biomass-to-urea only has 39% (LHV) with unconverted biomass carbon of up to 60%. The integrated power- and biomass-to-urea has outstanding heat integration performance which fixes all biomass carbon into urea, with an efficiency enhanced up to 53%. Due to the electricity demand, the levelized cost of the urea of integrated biomass- and power-to-urea is 15 – 38 and 58 – 87% points higher than those of the biomass-to-urea and methane-to-urea for the scale of 10 – 60 MWth urea production. The available annual hours and electricity price of renewable electricity have a significant impact on the levelized cost of the urea. When the available annual hours decrease from 7200 to 3600 with an electricity price of 73 $/MWh, the levelized cost of urea increases on average by 13% from 51 $/GJ with the plant capacity being 10 – 60 MWth urea. However, when electricity price is reduced from 73 $/MWh to 35 $/MWh with available annual hours of 3600, the levelized cost decreases on average by 15% from 59 $/GJ with the same plant capacity.
Keywords: Renewable urea; Methane-to-urea; Biomass-to-urea; Power-to-urea; Power-to-hydrogen; Solid-oxide electrolyzer (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317712
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:284:y:2021:i:c:s0306261920317712
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116401
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().