EconPapers    
Economics at your fingertips  
 

Operation of a low-temperature differential heat engine for power generation via hybrid nanogenerators

Zeeshan,, Basanta Kumar Panigrahi, Rahate Ahmed, Muhammad Uzair Mehmood, Jin Chul Park, Yeongmin Kim and Wongee Chun

Applied Energy, 2021, vol. 285, issue C, No S0306261920317591

Abstract: This work aims for the exploitation of low-grade thermal energy (<100 °C) in conjunction with the operation of nanogenerators run by a highly responsive low-temperature differential (LTD) heat engine. Two different types of nanogenerators were fabricated and tested in four different schemes: triboelectric in non-contact sliding mode (TENG), piezoelectric in contact-separation mode (PENG), triboelectric in contact-separation mode (TENG-2), and coupled triboelectric and piezoelectric in contact-separation mode (TENG-PENG). A series of tests were performed in generating power from the coupled action of triboelectric and piezoelectric nanogenerators with the operation of a LTD Stirling engine to harness low-grade thermal energy. This stands out as compared to previous studies from the perspective of operating two different types of nanogenerators in two different modes at the same time and the exploitation of low-grade thermal energy rather than the ambient mechanical energy, which is witnessed in most accomplishments in the relevant area. Running the triboelectric nanogenerator (non-contact sliding mode) with a small LTD heat engine (MM-7 Stirling engine) delivered a maximum output voltage of 35 V for a temperature difference of 73.2 °C. Meanwhile, the piezoelectric, triboelectric, and hybridized triboelectric-piezoelectric (contact-separation mode) nanogenerator produced output voltages of 4 V, 20.1 V, and 40 V, respectively. A maximum combined voltage of 74 V was also measured when the output of the triboelectric generator in noncontact sliding mode was combined with the hybrid (triboelectric-piezoelectric) nanogenerator operating in contact-separation mode. Operating the nanogenerators in conjunction with an electromagnetic generator (EMG) was also tested as appropriate, which clearly demonstrates the potential of their application in a hybrid manner if needed.

Keywords: LTD heat engine; Nanogenerators; Hybrid (triboelectric-piezoelectric) power generation; Low-grade waste heat (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317591
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317591

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116385

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317591