EconPapers    
Economics at your fingertips  
 

Degradation adaptive energy management strategy using fuel cell state-of-health for fuel economy improvement of hybrid electric vehicle

Ke Song, Yuhang Ding, Xiao Hu, Hongjie Xu, Yimin Wang and Jing Cao

Applied Energy, 2021, vol. 285, issue C, No S0306261920317803

Abstract: Most studies on fuel cell hybrid electric vehicle energy management have focused on fuel economy. However, it is also important to consider the rapid degradation of the fuel cell. Therefore, a degradation-adaptive energy management strategy is proposed in this paper. The strategy can adaptively change the power distribution between different power sources using the fuel cell state-of-health. First, a novel degradation model is established for the fuel cell. The degradation model combines the polarisation curves of the fuel cell system under different state-of-health conditions and fuel cell efficiency models. An unbalanced degradation of the fuel cell at different current densities is shown in the degradation model. The proposed strategy is modified from an instantaneous optimisation energy management strategy by including state-of-health data. Accordingly, it is possible to provide optimised control based on the decrease in efficiency, thereby taking advantage of the unbalanced degradation. The proposed strategy can adaptively adjust the power distribution during degradation to get a higher energy efficiency over entire lifetime of fuel cell. The proposed strategy is adaptive to different degradation rates and consumes a small amount of computing resources, which ensure the feasibility of real-world implication. The performance of the proposed strategy is compared with that of the original strategy via simulation. The proposed strategy can optimise the fuel economy by 1.52–2.06% and 2.26–2.90% for a half and seriously degraded fuel cell, respectively. The results reveal that the proposed strategy provide an effective approach to improving the fuel economy of degraded fuel cell hybrid electric vehicles.

Keywords: Fuel cell hybrid electric vehicle; Energy management strategy; Fuel cell degradation; State of health; Degradation adaptive (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317803
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317803

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116413

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317803