MODWT-XGBoost based smart energy solution for fault detection and classification in a smart microgrid
Bhaskar Patnaik,
Manohar Mishra,
Ramesh C. Bansal and
Ranjan K. Jena
Applied Energy, 2021, vol. 285, issue C, No S0306261921000246
Abstract:
Electrical power being the key driver for any technology driven development, an intelligent technology enabled smart grid which ensures reliable, environment-friendly and power quality certainly provides the necessary fillip to the urban intelligence. This study introduces a novel differential approach of microgrid fault detection and classification as a smart grid enabler. The proposed microgrid protection scheme (MPS) involves an initial phase of pre-processing through anti-aliasing and filtering out of noise of the retrieved system parameters. This is followed by feature extraction process using Maximal Overlap Discrete Wavelet Transform (MODWT) with an abstract wavelet family of mother wavelet ‘FejerKorovkin’ and three level of decomposition. The differential energy calculated for both three-phase current and its zero-sequence current component at each of the decomposition level of MODWT finally serves as input to an Extreme Gradient Boost (XGBoost) based machine learning model to achieve incipient fault detection and classification. The combination of MODWT and XGBoost as an intelligent MPS working upon a pre-processed de-noised system signals, hitherto untried as per the knowledge of the authors, is tested using standard IEC microgrid test model under varied topological configurations, operational modes, fault conditions, etc. The simulation results, so extensively obtained, prove the effectiveness and robustness of the proposed approach of MPS. The MPS is additionally verified on an IEEE 13 bus microgrid model to reinforce the clam of efficiency.
Keywords: Smart grid; Urban intelligence; Smart energy solution; Micro-grid; Maximum overlap discrete wavelet transform; MODWT; XGBoost (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921000246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000246
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116457
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().