A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data
Bingxu Li,
Fanyong Cheng,
Xin Zhang,
Can Cui and
Wenjian Cai
Applied Energy, 2021, vol. 285, issue C, No S030626192100026X
Abstract:
In practical chiller systems, applying efficient fault diagnosis techniques can significantly reduce energy consumption and improve energy efficiency of buildings. The success of the existing methods for fault diagnosis of chillers relies on the condition that sufficient labeled data are available for training. However, label acquisition is laborious and costly in practice. Usually, the number of labeled data is limited and most data available are unlabeled. Most of the existing methods cannot exploit the information contained in unlabeled data, which significantly limits the improvement of fault diagnosis performance in chiller systems. To make effective use of unlabeled data to further improve fault diagnosis performance and reduce the dependency on labeled data, we proposed a novel semi-supervised data-driven fault diagnosis method for chiller systems based on the semi-generative adversarial network, which incorporates both unlabeled and labeled data into learning process. The semi-generative adversarial network can learn the information of data distribution from unlabeled data and this information can help to significantly improve the diagnostic performance. Experimental results demonstrate the effectiveness of the proposed method. Under the scenario that there are only 80 labeled samples and 16,000 unlabeled samples, the proposed method can improve the diagnostic accuracy to 84%, while the supervised baseline methods only reach the accuracy of 65% at most. Besides, compared with the supervised learning method based on the neural network, the proposed semi-supervised method can reduce the minimal required number of labeled samples by about 60% when there are enough unlabeled samples.
Keywords: Fault diagnosis; Chiller; Semi-generative adversarial network; Unlabeled data; Semi-supervised learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100026X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:285:y:2021:i:c:s030626192100026x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116459
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().