EconPapers    
Economics at your fingertips  
 

Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications

Przemyslaw Maziarka, Peter Sommersacher, Xia Wang, Norbert Kienzl, Stefan Retschitzegger, Wolter Prins, Niklas Hedin and Frederik Ronsse

Applied Energy, 2021, vol. 286, issue C, No S030626192031792X

Abstract: Char obtained from biomass pyrolysis is an eco-friendly porous carbon, which has potential use as a material for electrodes in supercapacitors. For that application, a high microporous specific surface area (SSA) is desired, as it relates to the accessible surface for an applied electrolyte. Currently, the incomplete understanding of the relation between porosity development and production parameters hinders the production of tailor-made, bio-based pyrochars for use as electrodes. Additionally, there is a problem with the low reliability in assessing textual properties for bio-based pyrochars by gas adsorption. To address the aforementioned problems, beech wood cylinders of two different lengths, with and without pre-treatment with citric acid were pyrolysed at temperatures of 300–900 °C and analysed by gas adsorption. The pyrolyzed chars were characterised with adsorption with N2 and CO2 to assess the influence of production parameters on the textual properties. The new approach in processing the gas adsorption data used in this study demonstrated the required consistency in assessing the micro- and mesoporosity. The SSA of the chars rose monotonically in the investigated range of pyrolysis temperatures. The pre-treatment with citric acid led to an enhanced SSA, and the length of the cylinders correlated with a reduced SSA. With pyrolysis at 900 °C, the micro-SSAs of samples with 10 mm increased by on average 717 ± 32 m2/g. The trends among the investigated parameters and the textual properties were rationalized and provide a sound basis for further studies of tailor-made bio-based pyrochars as electrode materials in supercapacitors.

Keywords: Pyrochar; Temperature; Specific surface area; Tailoring; Supercapacitor electrode (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192031792X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:286:y:2021:i:c:s030626192031792x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116431

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:286:y:2021:i:c:s030626192031792x