The promise and challenges of utility-scale compressed air energy storage in aquifers
Chaobin Guo,
Cai Li,
Keni Zhang,
Zuansi Cai,
Tianran Ma,
Federico Maggi,
Yixiang Gan,
Abbas El-Zein,
Zhejun Pan and
Luming Shen
Applied Energy, 2021, vol. 286, issue C, No S0306261921000714
Abstract:
Widely distributed aquifers have been proposed as effective storage reservoirs for compressed air energy storage (CAES). This aims to overcome the limitations of geological conditions for conventional utility-scale CAES, which has to date used caverns as the storage reservoirs. As a promising technology, compressed air energy storage in aquifers (CAESA) has received increasing attention as a potential method to deal with the intermittent nature of solar or wind energy sources. This article presents a selective review of theoretical and numerical modeling studies as well as field tests, along with efficiency and economic analyses, to assess the feasibility of the emerging technology. Although some field tests suggest that a large bubble could be created in aquifers to sustain the working cycles at target rates, challenges remain before the technology can be recommended for wide deployment. The geological critical safety factors affecting the gas bubble development and sustainability of operation cycles include the geological structure, aquifer depth, and hydrodynamic and mechanical properties, such as porosity, permeability, compressibility, and mineral composition. Moreover, the injection/withdrawal well configurations and oxidation reactions caused by the oxygen in compressed air should also be considered. The failed attempt of renewable energy combined with CAESA in Iowa is described and the lessons learned are summarized. Combining CAESA with thermal storage, using CO2 as cushion gas, horizontal wells or hydraulic fracturing, and man-made boundaries are proposed to improve CAESA efficiency but need further study for future applications.
Keywords: Compressed air energy storage; Aquifers; Storage efficiency; Pittsfield test; Iowa Stored Energy Plant Agency project (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921000714
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000714
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116513
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().