EconPapers    
Economics at your fingertips  
 

Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system

Dohyung Jang, Hyun-Seok Cho and Sanggyu Kang

Applied Energy, 2021, vol. 287, issue C, No S0306261921001021

Abstract: Hydrogen is considered a promising green energy carrier due to its long storage period and zero harmful emissions. The green hydrogen produced by water electrolysis using renewable energy is indispensable for expanding the renewable energy grid and establishing a clean energy society. As renewable power sources are widely deployed, hydrogen can be utilized to connect the energy demand section with the energy supply section. To transport hydrogen to demand sites, one of the most common commercial methods is hydrogen compression. Notably, high-pressure water electrolysis does not need to additionally compress hydrogen, which can significantly diminish the cost of hydrogen production. In this study, to evaluate the effect of the operating pressure on the performance of an alkaline water electrolysis (AWE) system, a numerical model of the AWE system was developed using Aspen Plus®. The AWE system is comprised of the AWE stack, water pumps, heat exchangers, separator, condenser, and electric heat pump (EHP) system. The AWE stack model is validated by comparing the current–voltage polarization curve with experimental data. Simulation results show that an appropriate pressure makes the system more efficient due to decreasing the power consumption of the balance of plant (BOP). Furthermore, high-pressure water electrolysis has a large advantage for obtaining high-purity hydrogen (over 99.9%) without using a water adsorption device.

Keywords: Renewable energy; Hydrogen production; Alkaline water electrolysis system; Numerical modeling; Pressurized operation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001021
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001021

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116554

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001021