EconPapers    
Economics at your fingertips  
 

Beyond Leidenfrost levitation: A thin-film boiling engine for controlled power generation

Prashant Agrawal, Gary G. Wells, Rodrigo Ledesma-Aguilar, Glen McHale and Khellil Sefiane

Applied Energy, 2021, vol. 287, issue C, No S0306261921001045

Abstract: Overcoming friction between moving components is important for reducing energy losses and component wear. Hydrodynamic lubrication via thin-film boiling provides an opportunity for reduced friction energy and mass transport. A common example of such lubrication is the Leidenfrost effect, where a liquid droplet levitates on a cushion ofits own vapor on a surface heated to temperatures above the liquid's boiling point. An asymmetry in this vapor flow, self-propels the droplet on the surface due to viscous drag, converting thermal energy to mechanical motion, like a heat engine. Although levitation significantly reduces friction, the induced self-propulsion depends on substrate geometry and material properties, which limits dynamic propulsion control. Therefore, the ability to control the power output is a significant challenge in realizing operational mm and sub-mm scale virtually frictionless engines. Here, we present a thin-film boiling engine where we control the power output mechanically. The rotor, which comprises of a working liquid coupled to a non-volatile solid, is manually positioned over a heated turbine-inspired stator in a thin-film boiling state. We show that by controlling the position of the rotor over the substrate the power output from the rotation can be controlled above and below the Leidenfrost temperature (~250 °C). We explain these experimental observations using a hydrodynamic analytical model. Additionally, we achieve propulsion outputs almost 4 times higher than levitation-based propulsion systems. The ability to control the rotation characteristics of such virtually frictionless engines allows potential applications in extreme environments such as at microscales or for space and planetary exploration.

Keywords: Thin-film boiling; Heat engine; Leidenfrost; Turbine; Droplet; Liquid bridge (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001045

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116556

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001045