A methodology for architecture agnostic and time flexible representations of wave energy converter performance
Bryson Robertson,
Helen Bailey,
Matthew Leary and
Bradley Buckham
Applied Energy, 2021, vol. 287, issue C, No S030626192100132X
Abstract:
The growth of the wave energy sector is contingent on the ability for stakeholders, particularly electrical utilities, to rapidly predict the production from wave energy converters (WECs). Current methodologies require extensive knowledge of metocean conditions, a priori determination of WEC architecture, and highly-specific physical and numerical tools. Additionally, the lack of a consistent robust method to up-sample the hourly temporal resolution of traditional wave buoys and/or numerical wave propagation models limits the implementation of wave energy technologies in Integrated Resource Planning (IRP) by utilities. These two knowledge gaps create a significant barrier for broad adoption of wave energy. This novel research provides an overview of a waves-to-wire method to quantify WEC performance, across a wide variety of technology architectures, to develop an empirically driven and easily applicable generic model of WEC performance. The generic WEC performance model ultimately shows an average co-efficient of determination (R2) of 0.93 and less than 9% variation in annual energy production when compared against five significantly different WEC architectures. The temporal up-sampling methodology is shown to generate wave resource and WEC performance data at a resolution suitable for an IRP process, creates a realistic representation of wave condition variability on short-time frames, and does not artificially perturb the available energy on an annual basis.
Keywords: Wave energy converter; Power production; Generic model; Temporal sampling; Resource assessment; Wave spectra (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100132X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:287:y:2021:i:c:s030626192100132x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116588
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().