EconPapers    
Economics at your fingertips  
 

Enhancement effect of catalyst support on indirect hydrogen production from propane partial oxidation towards commercial solid oxide fuel cell (SOFC) applications

Chao Wang, Mingzheng Liao, Bo Liang, Zhiqiang Jiang, Weilin Zhong, Ying Chen, Xianglong Luo, Riyang Shu, Zhipeng Tian and Libin Lei

Applied Energy, 2021, vol. 288, issue C, No S0306261920317414

Abstract: Utilization of propane in solid oxide fuel cells (SOFCs) is desired for commercial applications. However, the susceptibility of conventional Ni-based anode to coking is still a technical challenge. Developing an efficient catalyst for hydrogen production through partial oxidation of propane is a feasible approach to address this issue. In fact, hydrogen production from propane partial oxidation is profoundly determined by catalyst performance, which further affects the fuel cell efficiency. In this study, a robust and efficient catalyst is developed by incorporating inexpensive TiO2 into Ni-Co/Al2O3 catalyst. The results suggested that an appropriate amount of TiO2 in catalyst support could regulate the interaction between active metal and Al2O3 support therefore inhibiting catalyst carbon deposition and sintering. Also, TiO2 addition is conducive to the catalyst regeneration process by reducing the activation energy of oxidative decarburization. Hydrogen yield was efficiently promoted by the synthesized catalyst. Consequently, under the equivalent hydrogen (160 ml/min) produced over the catalyst, the SOFCs, with a cathode area of 15 cm2, display impressive performance (maximum power density, 404 mW/cm2) and excellent stability. Through cost-benefit analysis, the application of the synthesized catalyst is considered for great advantages in capital and energy saving. Ultimately, this work might offer a novel point of view for developing a low-cost, robust and efficient catalyst towards indirect hydrogen production for SOFCs.

Keywords: Hydrogen production; Propane partial oxidation; Ni-Co/Al2O3-TiO2 catalyst; Solid oxide fuel cell (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317414
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261920317414

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.116362

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261920317414