Enhancement effect of catalyst support on indirect hydrogen production from propane partial oxidation towards commercial solid oxide fuel cell (SOFC) applications
Chao Wang,
Mingzheng Liao,
Bo Liang,
Zhiqiang Jiang,
Weilin Zhong,
Ying Chen,
Xianglong Luo,
Riyang Shu,
Zhipeng Tian and
Libin Lei
Applied Energy, 2021, vol. 288, issue C, No S0306261920317414
Abstract:
Utilization of propane in solid oxide fuel cells (SOFCs) is desired for commercial applications. However, the susceptibility of conventional Ni-based anode to coking is still a technical challenge. Developing an efficient catalyst for hydrogen production through partial oxidation of propane is a feasible approach to address this issue. In fact, hydrogen production from propane partial oxidation is profoundly determined by catalyst performance, which further affects the fuel cell efficiency. In this study, a robust and efficient catalyst is developed by incorporating inexpensive TiO2 into Ni-Co/Al2O3 catalyst. The results suggested that an appropriate amount of TiO2 in catalyst support could regulate the interaction between active metal and Al2O3 support therefore inhibiting catalyst carbon deposition and sintering. Also, TiO2 addition is conducive to the catalyst regeneration process by reducing the activation energy of oxidative decarburization. Hydrogen yield was efficiently promoted by the synthesized catalyst. Consequently, under the equivalent hydrogen (160 ml/min) produced over the catalyst, the SOFCs, with a cathode area of 15 cm2, display impressive performance (maximum power density, 404 mW/cm2) and excellent stability. Through cost-benefit analysis, the application of the synthesized catalyst is considered for great advantages in capital and energy saving. Ultimately, this work might offer a novel point of view for developing a low-cost, robust and efficient catalyst towards indirect hydrogen production for SOFCs.
Keywords: Hydrogen production; Propane partial oxidation; Ni-Co/Al2O3-TiO2 catalyst; Solid oxide fuel cell (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920317414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261920317414
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.116362
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().