EconPapers    
Economics at your fingertips  
 

Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power

Pengjie Tian, Xuejun Liu, Kaiyao Luo, Hongkun Li and Yun Wang

Applied Energy, 2021, vol. 288, issue C, No S0306261921001677

Abstract: The maximum achievable power of a polymer electrolyte membrane (PEM) fuel cell under specific operating temperature is important to its application. In this paper, we propose a method that integrates an artificial neural network (ANN) with the genetic algorithm (GA) to predict the performance of a PEM fuel cell and identify its maximum powers and corresponding conditions for operational control purpose. A validated three-dimensional (3D) multiphysics model is employed to generate total 1500 data points for training, testing, and verifying the ANN, which consists of two hidden layers with eight and four neurons on each hidden layer, respectively. After the ANN is properly trained, it is incorporated into the GA for deep learning to identify the maximum power and corresponding operating conditions, which shows that the fuel cell configuration could achieve a maximum power of about 0.78 W/cm2 at 368.8 K. Additionally, the combined ANN-GA method is employed to identify the maximum powers and their operating conditions under eight typical operation temperatures in the range of 323–373 K. The deep-learning results reflect the major physical and electrochemical processes that govern fuel cell performance and are validated against the 3D multiphysics model. The results demonstrate that the combined ANN-GA method is suitable to predicting fuel cell performance and identifying operation parameters for the maximum powers under various temperatures, which is important to practical system design and rapid control in fuel cell applications.

Keywords: Artificial neural network; Genetic algorithm; PEM fuel cell; Performance; Maximum power; Multiphysics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001677
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001677

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116632

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001677