Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control
Shiyu Yang,
Man Pun Wan,
Wanyu Chen,
Bing Feng Ng and
Swapnil Dubey
Applied Energy, 2021, vol. 288, issue C, No S0306261921001811
Abstract:
The adoption of model predictive control (MPC) for building automation and control applications is challenged by the high hardware and software requirements to solve its optimization problem. This study proposes an approximate MPC that mimics the dynamic behaviours of MPC using the recurrent neural network with a structure of nonlinear autoregressive network with exogenous inputs. The approximate MPC is developed by learning from the measured operation data of buildings controlled by MPC, therefore it can produce MPC-like control for buildings without needing to solve the optimization problem, significantly reducing the computation load as compared to MPC. The proposed approximate MPC is implemented in two testbeds, an office and a lecture theatre, to control the air-conditioning systems. The control performance of the approximate MPC is compared to MPC as well as the original reactive control of the two testbeds. The approximate MPC retained most of the energy and thermal comfort performance of MPC in both testbeds. For the office, the MPC and approximate MPC reduced 58.5% and 51.6% of cooling energy consumption, respectively, as compared to the original control. For the lecture theatre, the MPC and approximate MPC reduced 36.7% and 36.2% of cooling energy consumption, respectively, as compared to the original control. Meanwhile, both approximate MPC and MPC significantly improved indoor thermal comfort in the two testbeds as compared to their original control. Despite having minor degradation in control performance the approximate MPC was more than 100 times faster than MPC in generating optimal control commands in each time step.
Keywords: Model Predictive Control (MPC); Machine-learning (ML); Recurrent Neural Network (RNN); Air Conditioning and Mechanical Ventilation (ACMV) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001811
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116648
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().