EconPapers    
Economics at your fingertips  
 

A comparative study on biogas production, energy balance, and nutrients conversion with inter-stage hydrothermal treatment of sewage sludge

Xiaoguang Liu, Qian Wang, Yuanzhi Tang and Spyros G. Pavlostathis

Applied Energy, 2021, vol. 288, issue C, No S0306261921001999

Abstract: As an alternative to pre-stage hydrothermal treatment (HT) before anaerobic digestion (AD), inter-stage HT (i.e., AD-HT-AD) has been proposed to increase biogas production and to further reduce the residual organic matter. The goal of this study was to evaluate the effect of inter-stage HT at 155 °C on the ultimate biodegradability and AD extent of sewage sludge mixture (i.e., primary and waste activated sludge). The sludge ultimate biodegradability was evaluated through biochemical methane potential tests. AD-AD and AD-HT-AD configurations were investigated in semi-continuously fed bench-scale digesters in terms of methane production, solids reduction, nutrients transformation, and energy balance. Results were compared with those of AD and HT-AD configurations from our previous study. Inter-stage HT increased the ultimate biodegradability of the sludge mixture; however, pre- and inter-stage HT resulted in comparable overall specific methane production. Compared to AD and HT-AD, AD-AD and AD-HT-AD had comparable methane production, higher VS destruction (by 3.4–9.3%), but lower overall crude protein removal (by 4.0–7.5%) and soluble orthophosphate concentration decrease (by 32.5–60.8%). There was minimal difference in net energy production by AD and AD-AD (single digester vs. two digesters; 1.4 GJ/d), as well as by HT-AD and AD-HT-AD (pre-HT vs. inter-HT; 0.4 GJ/d). High HT heat recovery is needed for HT-AD and AD-HT-AD to obtain energy balance comparable to AD and AD-AD. Compared to single-step AD, the two-step AD process is more complex and thus less attractive for the digestion of sewage sludge with a relatively high ultimate biodegradability as was the case in this study. However, AD-HT-AD may be more beneficial considering post-AD sludge handling processes.

Keywords: Hydrothermal treatment; Anaerobic digestion; Ultimate biodegradability; Methane production; Energy balance; Solids reduction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921001999
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001999

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116669

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001999