Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation
Hamed Bakhtiari,
Jin Zhong and
Manuel Alvarez
Applied Energy, 2021, vol. 290, issue C, No S0306261921002373
Abstract:
Due to the lack of available flexibility sources to cope with different uncertainties in the real-time operation of stand-alone renewable energy-based microgrids, the stochastic behavior of uncertainty sources needs to be included in the planning stage. Since there is a high association between some of the uncertainty sources, defining a proper time series to represent the behavior of each source of uncertainty is a challenging issue. Consequently, uncertainty sources should be modeled in such a way that the designed microgrid be able to cope with all scenarios from probability and impact viewpoints. This paper proposes a modified Metropolis–coupled Markov chain Monte Carlo (MC)3 simulation to predict the stochastic behavior of different uncertainty sources in the planning of a stand-alone renewable energy-based microgrid. Solar radiation, wind speed, the water flow of a river, load consumption, and electricity price have been considered as primary sources of uncertainty. A novel data classification method is introduced within the (MC)3 simulation to model the time-dependency and the association between different uncertainty sources. Moreover, a novel curve-fitting approach is proposed to improve the accuracy of representing the multimodal distribution functions, modeling the Markov chain states, and the long-term probability of uncertainty sources. The predicted representative time series with the proposed modified (MC)3 model is benchmarked against the retrospective model, the long-term historical data, and the simple Monte Carlo simulation model to capture the stochastic behavior of uncertainty sources. The results show that the proposed model represents the probability distribution function of each source of uncertainty, the continuity of samples, time dependency, the association between different uncertainty sources, short-term and long-term trends, and the seasonality of uncertainty sources. Finally, results confirm that the proposed modified (MC)3 can appropriately predict all scenarios with high probability and impact.
Keywords: Uncertainty modeling; Metropolis–coupled Markov chain Monte Carlo simulation; Data classification method; Curve-fitting approach (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921002373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002373
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116719
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().