A storage expansion planning framework using reinforcement learning and simulation-based optimization
Stamatis Tsianikas,
Nooshin Yousefi,
Jian Zhou,
Mark D. Rodgers and
David Coit
Applied Energy, 2021, vol. 290, issue C, No S030626192100283X
Abstract:
In the wake of the highly electrified future ahead of us, the role of energy storage is crucial wherever distributed generation is abundant, such as in microgrid settings. Given the variety of storage options that are becoming more and more economical, determining which type of storage technology to invest in, along with the appropriate timing and capacity becomes a critical research question. It is inevitable that these problems will continue to become increasingly relevant in the future and require strategic planning and holistic and modern frameworks in order to be solved. Reinforcement Learning algorithms have already proven to be successful in problems where sequential decision-making is inherent. In the operations planning area, these algorithms are already used but mostly in short-term problems with well-defined constraints. On the contrary, we expand and tailor these techniques to long-term planning by utilizing model-free algorithms combined with simulation-based models. A model and expansion plan have been developed to optimally determine microgrid designs as they evolve to dynamically react to changing conditions and to exploit energy storage capabilities. We show that it is possible to derive better engineering solutions that would point to the types of energy storage units which could be at the core of future microgrid applications. Another key finding is that the optimal storage capacity threshold for a system depends heavily on the price movements of the available storage units. By utilizing the proposed approaches, it is possible to model inherent problem uncertainties and optimize the whole streamline of sequential investment decision-making.
Keywords: Investment planning; Decision-making; Reinforcement learning; Microgrids (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100283X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:290:y:2021:i:c:s030626192100283x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116778
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().