EconPapers    
Economics at your fingertips  
 

Forecasting the price-response of a pool of buildings via homothetic inverse optimization

Ricardo Fernández-Blanco, Juan Miguel Morales and Salvador Pineda

Applied Energy, 2021, vol. 290, issue C, No S0306261921002944

Abstract: This paper focuses on the day-ahead forecasting of the aggregate power of a pool of smart buildings equipped with thermostatically-controlled loads. We first propose the modeling of the aggregate behavior of its power trajectory by using a geometric approach. Specifically, we assume that the aggregate power is a homothet of a prototype building, whose physical and technical parameters are chosen to be the mean of those in the pool. This allows us to preserve the building thermal dynamics of the pool. We then apply inverse optimization to estimate the homothetic parameters with bilevel programming. The lower level characterizes the price-response of the ensemble by a set of marginal utility curves and a homothet of the prototype building, which, in turn, are inferred in the upper-level problem. The upper level minimizes the mean absolute error over a training sample. This bilevel program is transformed into a regularized nonlinear problem that is initialized with the solution given by an efficient heuristic procedure. This heuristic consists in solving two linear programs and its solution is deemed a suitable proxy for the original bilevel problem. The results have been compared to state-of-the-art methodologies.

Keywords: Electricity demand forecasting; Smart buildings; Demand response; Inverse optimization; Bilevel programming; Homothet (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921002944
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002944

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116791

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002944