EconPapers    
Economics at your fingertips  
 

An air-source hybrid absorption-compression heat pump with large temperature lift

J.T. Gao, Z.Y. Xu and R.Z. Wang

Applied Energy, 2021, vol. 291, issue C, No S0306261921003123

Abstract: High-temperature heat pump is gaining more and more research attention due to the efficient heat supply for industrial uses, which includes waste heat-source, water-source, and air-source types. Although air heat source has lower energy grade, its superior availability is attractive. However, large temperature lift is necessary to fill in the gap between the low temperature ambient air and high temperature supply, which cannot be fulfilled by current heat pumps. In this study, a novel air-source hybrid absorption-compression heat pump is proposed to address this issue, in which the compression sub-cycle and absorption sub-cycle are thermally coupled for stepped temperature lift. Compared with the conventional air-source heat pump, a large temperature lift (over 90 °C) and relatively good thermodynamic perfectibility (0.34) are obtained. As the temperature lift increases from 70 °C to 110 °C, the coefficient of performance changes from 1.7 to 1.2. Moreover, heat recovery between the two sub-cycles is achieved to reduce the heat exchange capacity with air, thus saving air–liquid heat exchanger area and cost. Via the integration of relatively mature technologies, the proposed system provides a feasible and efficient way to upgrade ambient heat for industrial uses, and it is technologically available in different capacities.

Keywords: Absorption-compression; High-temperature heat pump; Ambient heat upgrading; Fluid comparison (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003123
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003123

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116810

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003123