Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration
Shuai Wang,
Bin Li,
Guanzheng Li,
Bin Yao and
Jianzhong Wu
Applied Energy, 2021, vol. 292, issue C, No S0306261921003457
Abstract:
Wind power prediction decreases the uncertainty of the entire energy system, which is essential for balancing energy supply and demand. In order to improve the prediction accuracy, a short-term wind power prediction method based on data cleaning and feature reconfiguration is proposed. A large number of historical samples consisting of wind direction, wind speed, and wind power are mapped into a multidimensional sample space, and the distribution of wind data in different dimensions are analyzed in depth. By calculating the local density of each sample, outliers are effectively detected. The features of wind are reconfigured into a global information map combined with the time series information, which reflects the variation of the wind process in the short term. The features of the original data are greatly enriched, providing a high-quality training set for the prediction model. A redesigned convolutional neural network was used to predict short-term wind power, and the proposed methods were trained and tested based on a dataset of a real wind farm in China. Data cleaning and feature reconfiguration reduce the average single-point error by 1.38% and 2.56%, respectively, while the combined method reduced it by 6.24%. Plenty of experimental results show that the proposed methods achieve good performance and effectively improve the accuracy of short-term wind power prediction.
Keywords: Short-term wind power prediction; Data cleaning; Local density; Feature reconfiguration; Convolutional neural network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003457
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116851
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().