Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations
Hongyang Dong,
Jincheng Zhang and
Xiaowei Zhao
Applied Energy, 2021, vol. 292, issue C, No S0306261921004086
Abstract:
Wind farms’ power-generation efficiency is constrained by the high system complexity. A novel deep reinforcement learning (RL)-based wind farm control scheme is proposed to handle this challenge and achieve power generation optimization. A reward regularization (RR) module is designed to estimate wind turbines’ normalized power outputs under different yaw settings and uncertain wind conditions, which brings strong robustness and adaptability to the proposed control scheme. The RR module is then combined with the deep deterministic policy gradient algorithm to evaluate the optimal yaw settings for all the wind turbines within the farm. The proposed wind farm control scheme is data-driven and model-free, which addresses the limitations of current approaches, including reliance on accurate analytical/parametric models and lack of adaptability to uncertain wind conditions. In addition, a novel composite learning-based controller for each turbine is designed to achieve closed-loop yaw tracking, which can guarantee the exponential convergence of tracking errors in the presence of uncertainties of yaw actuators. The whole control system can be pre-trained offline and fine-tuned online, providing an easy-to-apply solution with enhanced generality and flexibility for wind farms. High-fidelity simulations with SOWFA (simulator for offshore wind farm applications) and Tensorflow show that the proposed scheme can significantly improve the wind farm’s power generation by exploiting a sparse data set without requiring any wake model.
Keywords: Wind energy; Wind farm control; Power generation optimization; Deep reinforcement learning; CFD simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921004086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:292:y:2021:i:c:s0306261921004086
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116928
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().