Modelling of local mechanical failures in solid oxide cell stacks
Xing-Yuan Miao,
Omid Babaie Rizvandi,
Maria Navasa and
Henrik Lund Frandsen
Applied Energy, 2021, vol. 293, issue C, No S0306261921003858
Abstract:
Solid oxide cells can deliver highly efficient energy conversions between electricity and fuels/chemicals. A central challenge of upscaling solid oxide cells is the probability of failure of the brittle ceramic components. The failures of the ceramic components may lead to significant degradation or eventual failure of a stack. To predict mechanical failures in a stack, a full stack model is needed, together with a local assessment of stresses at the vicinity of failing regions, e.g. the contact points between the cells and interconnects. A conventional three-dimensional model requires a very fine discretization of the mesh to capture stress intensities. Computational resources needed for such a model are therefore immense, and it is highly unlikely to compute at stack scale, as well describe the evolution over time. In this work, the homogenization modelling framework for solid oxide cell stacks is extended to identify local mechanical failures. Thus, the fracturing within a local failing point is examined by using a localization approach, where stresses in the stack model are linked to the local stresses and the energy release rate at the crack tip of the relevant interface. This is done in a general manner, such that the local stresses and the energy release rate can be evaluated at every point in the stack at every instant of time without loss of computational efficiency. A 100-cell stack can be modelled in three dimensions with all coupled multiphysics in steady state within 3 min on a current workstation computer.
Keywords: Solid oxide cell stack; Crack initiation; Energy release rate; Homogenization; Multiscale modelling; Localization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003858
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003858
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116901
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().