Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier
Sampath Suranjan Salins,
S.V. Kota Reddy and
Shiva Kumar,
Applied Energy, 2021, vol. 293, issue C, No S0306261921004347
Abstract:
Cooling of the buildings is very much mandatory in summer and to meet this, considerable energy will be spent for cooling purpose across the world. Present work focuses on the multistage evaporative cooling pads where four different packing are used to analyze the different humidification output parameters. Cam shaft which is powered by the motor gives reciprocating motion to the cooling pads which is made to dip inside the stagnant water. Input operating parameters such as air velocity, cam shaft speed and the number of cooling pads are varied and the output parameters like pressure drop, cooling effect, coefficient of performance, relative humidity drop and energy consumption rate are determined. Results indicated that, there is an increase in COP, pressure drop and the energy consumption rate with the rise in the air velocity. Artificial neural network has been used for predicting the performance parameters of the experimental results. 3-15-4 structured MLP based network is considered and is trained by using trainscg, trainlm and using trainbr networks. Results indicated a good prediction capability of ANN techniques with MRE of test data lying below 12%. Trainbr outperformed the other two networks as the correlation coefficient was much higher and MRE was lower for both training as well as test data.
Keywords: Multistage; Reciprocating cooling pads; Cooling effect; Energy consumption; Artificial Neural network; Mean relative error (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921004347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:293:y:2021:i:c:s0306261921004347
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116958
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().