EconPapers    
Economics at your fingertips  
 

Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)

Xi Wang, Paul Henshaw and David S.-K. Ting

Applied Energy, 2021, vol. 294, issue C, No S0306261921004293

Abstract: Efficiency and cost-effectiveness play dominant roles in the commercialization of thermoelectric generator (TEG) technology. In this paper, the exergy analysis of a TEG module with 199 TE couples was considered. Two objective functions, the exergy efficiency and levelized cost of energy (LCOE), were established for exergoeconomic analysis. The geometric structure and working conditions involving TE couple length, base area ratio, working temperature, and load resistance were varied. The particle swarm optimization (PSO) method has excellent convergence and few parameters need to be adjusted. Mutation can increase randomization for the PSO method, making it possible to improve its search direction. Therefore, the mutation-PSO (M-PSO) algorithm was used to optimize the exergy efficiency and LCOE for the TEG. Through the M-PSO algorithm, the optimum corresponds to an exergy efficiency of 29% and LCOE of 1.93 $US/kWh·m2 under a maximum temperature difference of 40 K. In order to achieve a balance between the two exergoeconomic indices, the ξ-constraint combined with the M-PSO method was used to obtain alternatives, named Pareto solutions. Then, these alternatives were ranked to acquire an ideal solution based on a technique for order preference by similarity ideal solution (TOPSIS) method. The TOPSIS ideal solution corresponds to an exergy efficiency of 22.2% and LCOE of 3.02 $US/kWh·m2.

Keywords: TEG; Multi-objective optimization; Epsilon-constraint; TOPSIS (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921004293
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004293

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116952

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004293