Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data
Meenu Ajith and
Manel Martínez-Ramón
Applied Energy, 2021, vol. 294, issue C, No S0306261921004803
Abstract:
Solar irradiance forecasting has been gaining paramount importance in recent years due to its impact on power grids. However, solar energy harvesting over shorter periods also brings new challenges due to its intermittent and uncertain attributes. Hence, accurate forecasting has become an indispensable aspect of the effective management of power system operations. The existing models focus on using only time-series data for solar radiation forecasting. But during cloudy time instances, it fails to quickly capture the nonlinear Spatio-temporal variations in the data for shorter periods. To bridge this gap, in this paper, a multi-modal fusion network is developed for studying solar irradiance micro forecasts by using both infrared images and past solar irradiance data. Here both spatial and temporal information is extracted parallelly and fused using a fully connected neural network. The solar forecasts of the proposed methods are evaluated against benchmark models in terms of Mean Absolute Percentage Error (MAPE) and other qualitative measures. The experimental results illustrate that the multi-modal fusion networks outperform the existing methods while predicting solar irradiance for cloudy days as well as mixed days (both cloudy and sunny days). Hence a transfer learning-based classifier with 99.23% accuracy is developed to categorize the cloudy days from sunny days. In the case of higher horizon forecasts, the proposed models show the optimum trade-off between performance and test time. Moreover, the Multiple Image Convolutional Long Short Term Memory Fusion Network (MICNN-L) shows a 46.42% improvement in MAPE whereas the Convolutional Long Short Term Memory Fusion Network (CNN-L) has a 42.02% increase when compared to the benchmark machine learning and deep learning models.
Keywords: Solar energy forecasting; Deep learning; Multimodal feature fusion; Hybrid convolutional long short term memory; Infra-red images (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921004803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004803
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117014
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().