Efficient underwater energy harvesting from bubble-driven pipe flow
Zhibin Guan,
Ping Li,
Yumei Wen,
Yu Du,
Tao Han and
Xiaojun Ji
Applied Energy, 2021, vol. 295, issue C, No S0306261921004566
Abstract:
Bubbles are ubiquitous in water and are unusually energy-rich in the seabed. Harvesting energy from subsea bubbles is a viable solution to supplying energy in situ for underwater equipment, but the existing approaches are unsatisfactory due to low-efficient conversion of bubble potential energy. Here, we propose a novel bubble-driven pipe flow approach for efficient harvesting of bubble energy, which uses the liquid propelled by bubble buoyancy to form a directional pipe flow driving the turbine generator. We perform theoretical analysis of the bubble energy conversion process and the deductions are consistent with the experimental results. The average output power density generated by the new technique reaches 5.84 × 103 times higher than that of the existing bubble energy harvester. This strategy is expected to be a unique in situ power supply technique for underwater Internet of Things application due to its high efficiency and advanced functionality.
Keywords: Energy harvesting; Gas–liquid two-phase flow; Bubble-driven pipe flow; Subsea gas leakage; In-situ power supply (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921004566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004566
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116987
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().