Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting
Pratima Kumari and
Durga Toshniwal
Applied Energy, 2021, vol. 295, issue C, No S0306261921005158
Abstract:
The volatile behavior of solar energy is the biggest challenge in its successful integration with existing grid systems. Accurate global horizontal irradiance (GHI) forecasting can resolve this issue and lead to early and effective participation in the energy market. This study proposes a new hybrid deep learning model, namely long short term memory–convolutional neural network (LSTM–CNN), for hourly GHI forecasting, which models the spatio-temporal features by integrating the long short term memory (LSTM) and convolutional neural network (CNN) model. The proposed model is trained with the meteorological data of 23 locations of California State, USA, which includes temperature, precipitation, relative humidity, cloud cover, etc., as input parameters. The proposed hybrid LSTM–CNN model firstly uses LSTM to extract the temporal features from time-series solar irradiance data, followed by CNN, which extracts the spatial features from the correlation matrix of several meteorological variables of target and its neighbor location. The prediction accuracy of the developed model is analyzed rigorously by examining the performance for a year, for four seasons and under three sky conditions. Besides, the proposed LSTM–CNN model shows a forecast skill score in a range of about 37%–45% over few standalone models, including smart persistence, support vector machine, artificial neural network, LSTM, CNN and other hybrid models. The findings of the present work suggest that the proposed hybrid LSTM–CNN model is a reliable alternative for short-term GHI prediction due to its high predictive accuracy under diverse climatic, seasonal and sky conditions.
Keywords: Global horizontal irradiance; Spatio-temporal features; Deep learning; Long short term memory; Convolutional neural network; Hybrid model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921005158
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:295:y:2021:i:c:s0306261921005158
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().