EconPapers    
Economics at your fingertips  
 

The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production

Lucia S. Layritz, Iulia Dolganova, Matthias Finkbeiner, Gunnar Luderer, Alberto T. Penteado, Falko Ueckerdt and Jens-Uwe Repke

Applied Energy, 2021, vol. 296, issue C, No S0306261921005079

Abstract: Ethylene is one of the most important building blocks in the chemical industry, making its decarbonization a natural starting point for achieving emission targets of the industrial sector. We here present an in-depth analysis of carbon and energy flows of two main strategies that could potentially reduce emissions from ethylene production: (i) direct electrification of heat supply in the traditional steam cracking process and (ii) indirect electrification through a novel production route based on Power-to-Gas and Oxidative Coupling of Methane (OCM–PtG). By calculating carbon footprints of all processes as a function of electricity carbon intensity, we show that fueling the steam cracker with renewable electricity can achieve a maximal emission reduction of 30% while OCM–PtG can achieve a net-zero emission production process if electricity supply is completely decarbonized and resulting products are at least partially recycled at the end of their life cycle. An integrated analysis within an economy-wide, global climate policy scenario shows that these conditions are likely to be met only after 2030 even under very stringent climate policy in line with the climate targets of the Paris agreement. If not met, OCM–PtG can actually increase the carbon footprint of ethylene. We also show that OCM–PtG is currently not cost-competitive, but can become so under suitable boundary conditions. It becomes clear that policy instruments that support the market introduction of carbon capture utilization technologies like OCM–PtG are only justified, if conditions are ensured that enable a positive mitigation potential over their life cycle.

Keywords: Industry decarbonization; Carbon capture and utilization (CCU); Power-to-Gas; Steam cracking; Oxidative Coupling of Methane; Carbon footprint (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921005079
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:296:y:2021:i:c:s0306261921005079

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:296:y:2021:i:c:s0306261921005079