Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows
Sai Liu,
Chi Yan Tso,
Yu Wei Du,
Luke Christopher Chao,
Hau Him Lee,
Tsz Chung Ho and
Michael Kwok Hi Leung
Applied Energy, 2021, vol. 297, issue C, No S0306261921006310
Abstract:
The huge heat loss/gain through windows is the cause of great energy consumption in buildings. In addition, the traditional fabrication method for glass causes many environmental problems. Recently, transparent wood has emerged as a promising alternative to traditional glass because of its high transmittance, strong mechanical properties, excellent thermal insulation ability and sustainability. In this study, inspired by jellyfish, a thermochromic transparent hydrogel wood that can smartly regulate solar irradiation is proposed as a smart window material by impregnating Poly(N-isopropylacrylamide)-polyacrylamide hydrogel into delignified wood. The novel thermochromic transparent hydrogel wood inherits the excellent thermochromic properties of PNIPAM and strong mechanical properties of wood, showing advanced optical regulation ability (i.e. Tlum = 82.7% and 39.8% at the cold and hot states & ΔTsol = 38.1%), low transition temperature (i.e. Tc = 22.9 °C), mechanically robust (i.e. σ = 11.6 MPa along the axial direction) and low thermal conductivity (i.e. K = 0.37 W m−1 K−1 along the perpendicular direction of the wood growth). A field test conducted in October in Hong Kong shows that thermochromic transparent hydrogel wood can reduce the indoor air temperature by 4.3 °C. Furthermore, a computational simulation for an office building proves that 2.6–10.2% energy could be saved by thermochromic transparent hydrogel wood in four different climate-zone cities. Besides, thanks to the flexibility, thermochromic transparent hydrogel wood can be easily fitted on existing windows, demonstrating the great potential for use in energy-efficient buildings.
Keywords: Bionics; Energy-efficient buildings; Hydrogel; Smart windows; Thermochromism; Transparent woods (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921006310
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:297:y:2021:i:c:s0306261921006310
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117207
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().