EconPapers    
Economics at your fingertips  
 

Evaluating uncertainties in electrochemical impedance spectra of solid oxide fuel cells

Luka Žnidarič, Gjorgji Nusev, Bertrand Morel, Julie Mougin, Đani Juričić and Pavle Boškoski

Applied Energy, 2021, vol. 298, issue C, No S030626192100547X

Abstract: Electrochemical impedance spectroscopy (EIS) is a widely used tool for characterization of fuel cells and other electrochemical conversion systems. When applied to the on-line monitoring in the context of in-field applications, the disturbances, drifts and sensor noise may cause severe distortions in the evaluated spectra, especially in the low-frequency part. Failure to ignore the random effects can result in misinterpreted spectra and, consequently, in misleading diagnostic reasoning. This fact has not been often addressed in the research so far. In this paper, we propose an approach to the quantification of the spectral uncertainty, which relies on evaluating the uncertainty of the equivalent circuit model (ECM). We apply the computationally efficient variational Bayes (VB) method and compare the quality of the results with those obtained with the Markov chain Monte Carlo (MCMC) algorithm. Namely, MCMC algorithm returns accurate distributions of the estimated model parameters, while VB approach provides the approximate distributions. By using simulated and real data we show that approximate results provided by VB approach, although slightly over-optimistic, are still close to the more realistic MCMC estimates. A great advantage of the VB method for online monitoring is low computational load, which is several orders of magnitude lower compared to MCMC. The performance of VB algorithm is demonstrated on a case of ECM parameters estimation in a 6 cell solid oxide fuel cell (SOFC) stack. The complete numerical implementation for recreating the results can be found at https://repo.ijs.si/lznidaric/variational-bayes-supplementary-material.

Keywords: Variational Bayes; Monte Carlo; Solid oxide fuel cells; Fractional-order systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100547X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s030626192100547x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117101

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:298:y:2021:i:c:s030626192100547x