Community-scale interaction of energy efficiency and demand flexibility in residential buildings
Prateek Munankarmi,
Jeff Maguire,
Sivasathya Pradha Balamurugan,
Michael Blonsky,
David Roberts and
Xin Jin
Applied Energy, 2021, vol. 298, issue C, No S0306261921005754
Abstract:
Demand-side management (DSM) strategies, including energy efficiency (EE) and demand flexibility (DF), contribute to cost-effective operation of the electricity grid. From a system-level perspective, such programs reduce costs, enhance reliability, and reduce network issues. Similarly, DSM programs help participating customers reduce utility bills while maintaining occupant comfort. Understanding the relationship between EE and DF is key to realizing the full potential of DSM programs. In this study, we modeled an all-electric residential community based on a 498-home community that is planned for construction in Fort Collins, Colorado in the United States. We used this community model to study the relationship between different EE measures, including building envelope upgrades and smart appliances, and DF enabled by a home energy management system (HEMS) responding to a time-varying tariff. Various EE levels in the homes – code-minimum, zero energy ready, and even higher levels of envelope efficiency – were simulated. DF is enabled by the HEMS, which coordinates behind-the-meter resources, including flexible building loads, PV, and home battery systems, to minimize utility bills while maintaining occupant comfort. When comparing to the code-minimum homes, EE upgrades alone reduce HVAC energy use during peak hours by up to 50% and the HVAC utility bill by up to $312/year. With the addition of HEMS, the average daily peak demand can be reduced by up to 0.58 MW or 1.2 kW/home in the higher envelope efficiency homes. The combination of EE upgrades, HEMS, and home battery systems is expected to save homeowners up to $590/year while increasing community load flexibility. However, HEMS and home battery systems are less effective in increasing the DF in the more efficient homes due to the lower load.
Keywords: Demand-side management; Energy efficiency; Demand response; Demand flexibility; Residential community; Home energy management system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921005754
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005754
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117149
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().